\(\int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx\) [596]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 483 \[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\frac {7 \left (5 a^2-2 b^2\right ) e^{9/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{8 b^{9/2} \sqrt [4]{-a^2+b^2} d}-\frac {7 \left (5 a^2-2 b^2\right ) e^{9/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{8 b^{9/2} \sqrt [4]{-a^2+b^2} d}-\frac {35 a e^4 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {\cos (c+d x)}}+\frac {7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}+\frac {7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))} \]

[Out]

7/8*(5*a^2-2*b^2)*e^(9/2)*arctan(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(9/2)/(-a^2+b^2)^(1/
4)/d-7/8*(5*a^2-2*b^2)*e^(9/2)*arctanh(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(9/2)/(-a^2+b^
2)^(1/4)/d-1/2*e*(e*cos(d*x+c))^(7/2)/b/d/(a+b*sin(d*x+c))^2-7/12*e^3*(e*cos(d*x+c))^(3/2)*(5*a+2*b*sin(d*x+c)
)/b^3/d/(a+b*sin(d*x+c))+7/8*a*(5*a^2-2*b^2)*e^5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(si
n(1/2*d*x+1/2*c),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)^(1/2)/b^5/d/(b-(-a^2+b^2)^(1/2))/(e*cos(d*x+c))^
(1/2)+7/8*a*(5*a^2-2*b^2)*e^5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*
b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)^(1/2)/b^5/d/(b+(-a^2+b^2)^(1/2))/(e*cos(d*x+c))^(1/2)-35/4*a*e^4*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x+c))^(1/2)/b^4/d
/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 483, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {2772, 2942, 2946, 2721, 2719, 2780, 2886, 2884, 335, 304, 211, 214} \[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\frac {7 e^{9/2} \left (5 a^2-2 b^2\right ) \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{8 b^{9/2} d \sqrt [4]{b^2-a^2}}-\frac {7 e^{9/2} \left (5 a^2-2 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{8 b^{9/2} d \sqrt [4]{b^2-a^2}}+\frac {7 a e^5 \left (5 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 d \left (b-\sqrt {b^2-a^2}\right ) \sqrt {e \cos (c+d x)}}+\frac {7 a e^5 \left (5 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 d \left (\sqrt {b^2-a^2}+b\right ) \sqrt {e \cos (c+d x)}}-\frac {35 a e^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{4 b^4 d \sqrt {\cos (c+d x)}}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))}-\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2} \]

[In]

Int[(e*Cos[c + d*x])^(9/2)/(a + b*Sin[c + d*x])^3,x]

[Out]

(7*(5*a^2 - 2*b^2)*e^(9/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(8*b^(9/2)*(-a
^2 + b^2)^(1/4)*d) - (7*(5*a^2 - 2*b^2)*e^(9/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqr
t[e])])/(8*b^(9/2)*(-a^2 + b^2)^(1/4)*d) - (35*a*e^4*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(4*b^4*d*
Sqrt[Cos[c + d*x]]) + (7*a*(5*a^2 - 2*b^2)*e^5*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c
+ d*x)/2, 2])/(8*b^5*(b - Sqrt[-a^2 + b^2])*d*Sqrt[e*Cos[c + d*x]]) + (7*a*(5*a^2 - 2*b^2)*e^5*Sqrt[Cos[c + d*
x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(8*b^5*(b + Sqrt[-a^2 + b^2])*d*Sqrt[e*Cos[c + d
*x]]) - (e*(e*Cos[c + d*x])^(7/2))/(2*b*d*(a + b*Sin[c + d*x])^2) - (7*e^3*(e*Cos[c + d*x])^(3/2)*(5*a + 2*b*S
in[c + d*x]))/(12*b^3*d*(a + b*Sin[c + d*x]))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2772

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[g^2*((p - 1)/(b*(m + 1))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2780

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
 + b^2, 2]}, Dist[a*(g/(2*b)), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Dist[a*(g/(2*b)),
 Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Dist[b*(g/f), Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2)
+ b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2942

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x])/(b^2*f*(m + 1)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + 1)*(m + p + 1
))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Si
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && N
eQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {\left (7 e^2\right ) \int \frac {(e \cos (c+d x))^{5/2} \sin (c+d x)}{(a+b \sin (c+d x))^2} \, dx}{4 b} \\ & = -\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))}+\frac {\left (7 e^4\right ) \int \frac {\sqrt {e \cos (c+d x)} \left (-b-\frac {5}{2} a \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{4 b^3} \\ & = -\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))}-\frac {\left (35 a e^4\right ) \int \sqrt {e \cos (c+d x)} \, dx}{8 b^4}+\frac {\left (7 \left (5 a^2-2 b^2\right ) e^4\right ) \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx}{8 b^4} \\ & = -\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))}-\frac {\left (7 a \left (5 a^2-2 b^2\right ) e^5\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{16 b^5}+\frac {\left (7 a \left (5 a^2-2 b^2\right ) e^5\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{16 b^5}+\frac {\left (7 \left (5 a^2-2 b^2\right ) e^5\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{\left (a^2-b^2\right ) e^2+b^2 x^2} \, dx,x,e \cos (c+d x)\right )}{8 b^3 d}-\frac {\left (35 a e^4 \sqrt {e \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{8 b^4 \sqrt {\cos (c+d x)}} \\ & = -\frac {35 a e^4 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {\cos (c+d x)}}-\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))}+\frac {\left (7 \left (5 a^2-2 b^2\right ) e^5\right ) \text {Subst}\left (\int \frac {x^2}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{4 b^3 d}-\frac {\left (7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{16 b^5 \sqrt {e \cos (c+d x)}}+\frac {\left (7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{16 b^5 \sqrt {e \cos (c+d x)}} \\ & = -\frac {35 a e^4 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {\cos (c+d x)}}+\frac {7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}+\frac {7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))}-\frac {\left (7 \left (5 a^2-2 b^2\right ) e^5\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{8 b^4 d}+\frac {\left (7 \left (5 a^2-2 b^2\right ) e^5\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{8 b^4 d} \\ & = \frac {7 \left (5 a^2-2 b^2\right ) e^{9/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{8 b^{9/2} \sqrt [4]{-a^2+b^2} d}-\frac {7 \left (5 a^2-2 b^2\right ) e^{9/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{8 b^{9/2} \sqrt [4]{-a^2+b^2} d}-\frac {35 a e^4 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {\cos (c+d x)}}+\frac {7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}+\frac {7 a \left (5 a^2-2 b^2\right ) e^5 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{8 b^5 \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{7/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {7 e^3 (e \cos (c+d x))^{3/2} (5 a+2 b \sin (c+d x))}{12 b^3 d (a+b \sin (c+d x))} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 16.57 (sec) , antiderivative size = 777, normalized size of antiderivative = 1.61 \[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\frac {(e \cos (c+d x))^{9/2} \left (-\frac {16 \cos ^{\frac {3}{2}}(c+d x)}{3 b^3}+\frac {4 \left (a^2-b^2\right ) \cos ^{\frac {3}{2}}(c+d x)}{b^3 (a+b \sin (c+d x))^2}-\frac {22 a \cos ^{\frac {3}{2}}(c+d x)}{b^3 (a+b \sin (c+d x))}+\frac {35 a \left (8 b^{5/2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{2},1,\frac {7}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(c+d x)+3 \sqrt {2} a \left (a^2-b^2\right )^{3/4} \left (2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (c+d x)}+b \cos (c+d x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (c+d x)}+b \cos (c+d x)\right )\right )\right ) \left (a+b \sqrt {\sin ^2(c+d x)}\right )}{12 b^{9/2} \left (-a^2+b^2\right ) (a+b \sin (c+d x))}+\frac {28 \left (\frac {a \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(c+d x)}{3 \left (a^2-b^2\right )}+\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )+\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2}}\right ) \sin (c+d x) \left (a+b \sqrt {\sin ^2(c+d x)}\right )}{b^2 \sqrt {\sin ^2(c+d x)} (a+b \sin (c+d x))}\right )}{8 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Integrate[(e*Cos[c + d*x])^(9/2)/(a + b*Sin[c + d*x])^3,x]

[Out]

((e*Cos[c + d*x])^(9/2)*((-16*Cos[c + d*x]^(3/2))/(3*b^3) + (4*(a^2 - b^2)*Cos[c + d*x]^(3/2))/(b^3*(a + b*Sin
[c + d*x])^2) - (22*a*Cos[c + d*x]^(3/2))/(b^3*(a + b*Sin[c + d*x])) + (35*a*(8*b^(5/2)*AppellF1[3/4, -1/2, 1,
 7/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(3/2) + 3*Sqrt[2]*a*(a^2 - b^2)^(3/4)*(2
*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c
 + d*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*
Cos[c + d*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c + d*x]]))
*(a + b*Sqrt[Sin[c + d*x]^2]))/(12*b^(9/2)*(-a^2 + b^2)*(a + b*Sin[c + d*x])) + (28*((a*AppellF1[3/4, 1/2, 1,
7/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(3/2))/(3*(a^2 - b^2)) + ((1/8 + I/8)*(2*
ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c
 + d*x]])/(-a^2 + b^2)^(1/4)] - Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] +
 I*b*Cos[c + d*x]] + Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c
+ d*x]]))/(Sqrt[b]*(-a^2 + b^2)^(1/4)))*Sin[c + d*x]*(a + b*Sqrt[Sin[c + d*x]^2]))/(b^2*Sqrt[Sin[c + d*x]^2]*(
a + b*Sin[c + d*x]))))/(8*d*Cos[c + d*x]^(9/2))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 64.67 (sec) , antiderivative size = 3373, normalized size of antiderivative = 6.98

method result size
default \(\text {Expression too large to display}\) \(3373\)

[In]

int((e*cos(d*x+c))^(9/2)/(a+b*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

(-4*e^5*b*(1/6/b^4*(-2*(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*sin(1/2*d*x+1/2*c)^2+(-2*sin(1/2*d*x+1/2*c)^2*e+e)^
(1/2))/e-1/8/b^6*(3*a^2-b^2)/(e^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/
b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e+(
e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1
/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)
*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)))+9/64/b^6/(e^2*(a^2-
b^2)/b^2)^(1/4)*(a-1/3*b)*(16*(e^2*(a^2-b^2)/b^2)^(1/4)*(cos(1/2*d*x+1/2*c)^2-1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e
)^(1/2)*b^2+(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)*e*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c)^
2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1
/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/
2)))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)
)+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))))
*(a+1/3*b)/e/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-5/128*a^2/b^6/(e^2*(a^2-b^2)/b^2)^(1/
4)*(144/5*(cos(1/2*d*x+1/2*c)^2-1/2)*(20/9*cos(1/2*d*x+1/2*c)^4*b^2-20/9*cos(1/2*d*x+1/2*c)^2*b^2+a^2-4/9*b^2)
*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*b^2*(e^2*(a^2-b^2)/b^2)^(1/4)+(ln((2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^
2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-
e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2
^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1
/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)))*(4*cos(1/2*d*x+1
/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^2*e*2^(1/2))/e/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*
b^2+a^2)^2)+2*(e*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*e^5*a*(-3/b^4*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(
1/2*d*x+1/2*c),2^(1/2))+3/b^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*
x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^
(1/2)))+1/8/b^6*sum((-5*a^2+3*b^2)/_alpha*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_
alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1
/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a
^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2
*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=Root
Of(4*_Z^4*b^2-4*_Z^2*b^2+a^2))+1/b^4*(-(-(11*a^2-3*b^2)*b^2/a^2/e*cos(1/2*d*x+1/2*c)^3+1/2*(11*a^2-3*b^2)*b^2/
a^2/e*cos(1/2*d*x+1/2*c))*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2
-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/4*(11*a^2-3*b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+
1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/4*(1
1*a^2-3*b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-si
n(1/2*d*x+1/2*c)^2))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/64/
a^2/b^2*sum((-33*a^4+31*a^2*b^2-6*b^4)/_alpha*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*
(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*
2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b
^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*
c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=
RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))-4*a^2/b^4*(-1/2*(-b^2*(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c)^3+1/2*b^2*(a^2-b^
2)/a^2/e*cos(1/2*d*x+1/2*c))*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*
b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^2-(-1/8*b^2*(11*a^2-6*b^2)/a^4/e*cos(1/2*d*x+1/2*c)^3+1/16*b^2*(11*a^2-6*b
^2)/a^4/e*cos(1/2*d*x+1/2*c))*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4
*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/32*(11*a^2-6*b^2)/a^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*
c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1
/32*(11*a^2-6*b^2)/a^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c
)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))
-1/512/a^4/b^2*sum((-21*a^4+28*a^2*b^2-12*b^4)/_alpha*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctan
h(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2
+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1
/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*
d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2)))
,_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2))))/sin(1/2*d*x+1/2*c)/(e*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2))/d

Fricas [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate((e*cos(d*x+c))**(9/2)/(a+b*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {9}{2}}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(9/2)/(b*sin(d*x + c) + a)^3, x)

Giac [F]

\[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {9}{2}}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^(9/2)/(b*sin(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^3} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{9/2}}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int((e*cos(c + d*x))^(9/2)/(a + b*sin(c + d*x))^3,x)

[Out]

int((e*cos(c + d*x))^(9/2)/(a + b*sin(c + d*x))^3, x)